An ESA-led team subjected Intel’s new Myriad 2 artificial intelligence (AI) chip to one of the most energetic radiation beams available on Earth: the lead-ion beam delivered by CERN’s Super Proton Synchrotron (SPS) accelerator.
The Myriad 2 harnesses artificial intelligence for high-performance, low-power vision processing. It can be pre-trained with data to recognise particular features and patterns or perform in-depth 3D sensing. ESA engineers are interested in harnessing the Myriad 2 to perform in-orbit image processing on future space missions, reducing the amount of data that needs to be sent back to Earth.
“AI is a way of boosting the performance of any system with a camera in the loop,” explains ESA on-board computer engineer Gianluca Furano. “By autonomously figuring out the distance of an object from a camera and how fast it is moving it can take many more and better images. This also offers a means of enhancing guidance, navigation and control – for instance to capture drifting items of space debris.
“And it could let us overcome the performance bottleneck faced by imaging instruments on CubeSats and other small satellites. Low data-downlink bandwidth due to a small antenna size and limited power levels stops us accessing all the imagery we could acquire. The Myriad 2 requires less than a watt of power, and would also let instruments identify features of interest autonomously – for instance, spotting sudden flood events or forest fires, then realising these need to be sent down to the ground.”
Like all candidate hardware to be flown in space, it first needs to be tested against radiation: space is riddled with charged particles from the Sun and further out in the cosmos. CERN provided the most intense beam of ultra-high-energy heavy ions available – short of travelling into orbit. This was made possible under CERN’s R2E (Radiation to Electronics) project and in anticipation of a collaboration between CERN and ESA on matters of radiation environments, technologies and facilities. This collaboration will help explore the potential of CERN technologies and facilities for aerospace applications. CERN has also been collaborating with Intel, through a public-private partnership known as CERN openlab, since 2001.
ESA put chips in a path of an experimental beamline fed by the SPS, CERN’s second largest accelerator, which is located in a circular tunnel nearly 7 km in circumference. The heavy ions from the SPS have a high penetration capability, thus enabling the in-depth test of complex packaged electronic systems, very difficult to test in other irradiation facilities.
The team donned hard hats and ventured into a ground floor ‘cave’ surrounded by protective concrete blocks to place items in the beam path, retreating upstairs before the beam was fired. The results are now under study.
ESA is studying various space uses for the Myriad 2 chip as well as uses for maritime vessel recognition, based on the on-board integration of ‘Automatic Identification System’ signals from ships. Several other users from the aerospace community ran parallel tests in CERN’s North Area to use the unique characteristics of the SPS beam to simulate highly energetic galactic cosmic rays for calibrating scientific instruments or testing equipment capability to cope with the harsh environment of deep space.
This piece is adapted from a longer article originally published on the ESA website.
See more photos of the tests on CDS.